Interaction between the Origin Recognition Complex and the Replication Licensing Systemin Xenopus

نویسندگان

  • Alison Rowles
  • James P.J Chong
  • Lamorna Brown
  • Mike Howell
  • Gerard I Evan
  • J.Julian Blow
چکیده

The origin recognition complex (ORC) binds to origins of replication in budding yeast. We have cloned a Xenopus homolog of the largest ORC polypeptide (XORC1). Immunodepletion of XOrc1 from Xenopus egg extracts blocks the initiation of DNA replication. We have purified Xenopus ORC, consisting of a protein complex similar to yeast ORC. In Xenopus egg extracts, ORC associates with chromatin throughout G1 and S phases. RLF-M, a component of the replication licensing system, also associates with chromatin early in the cell cycle but dissociates during S phase. We show that the assembly of RLF-M onto chromatin is dependent on the presence of chromatin-bound ORC, leading to sequential assembly of initiation proteins onto replication origins during the cell cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins.

During late mitosis and early G1, a series of proteins are assembled onto replication origins that results in them becoming 'licensed' for replication in the subsequent S phase. In Xenopus this first involves the assembly onto chromatin of the Xenopus origin recognition complex XORC, and then XCdc6, and finally the RLF-M component of the replication licensing system. In this paper we examine ch...

متن کامل

Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in Xenopus.

In late mitosis and G1, Mcm2-7 are assembled onto replication origins to 'license' them for initiation. At other cell cycle stages, licensing is inhibited, thus ensuring that origins fire only once per cell cycle. Three additional factors--the origin recognition complex, Cdc6 and Cdt1--are required for origin licensing. We examine here how licensing is regulated in Xenopus egg extracts. We show...

متن کامل

Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading.

The assembly and disassembly of protein complexes at replication origins play a crucial role in the regulation of chromosomal DNA replication. The sequential binding of the origin recognition complex (ORC), Cdc6, and the minichromosome maintenance (MCM/P1) proteins produces a licensed replication origin. Before the initiation of replication can occur, each licensed origin must be acted upon by ...

متن کامل

Nucleoplasmin-mediated chromatin remodelling is required for Xenopus sperm nuclei to become licensed for DNA replication.

During late mitosis and early G(1), a series of proteins are assembled onto replication origins, resulting in them becoming 'licensed' for replication in the subsequent S phase. Four factors have so far been identified that are required for chromatin to become functionally licensed: ORC (the origin recognition complex) and Cdc6, plus the two components of the replication licensing system RLF-M ...

متن کامل

The RLF-B component of the replication licensing system is distinct from Cdc6 and functions after Cdc6 binds to chromatin

Replication licensing factor (RLF) is an essential initiation factor that can prevent re-replication of DNA in a single cell cycle [1] [2]. It is required for the initiation of DNA replication, binds to chromatin early in the cell cycle, is removed from chromatin as DNA replicates and is unable to re-bind replicated chromatin until the following mitosis. Chromatography of RLF from Xenopus extra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 87  شماره 

صفحات  -

تاریخ انتشار 1996